### Refine

#### Year of publication

- 2019 (1)
- (1)

#### Keywords

- Approximation (2) (remove)

#### Institute

- Fachbereich 4 (2) (remove)

Our goal is to approximate energy forms on suitable fractals by discrete graph energies and certain metric measure spaces, using the notion of quasi-unitary equivalence. Quasi-unitary equivalence generalises the two concepts of unitary equivalence and norm resolvent convergence to the case of operators and energy forms defined in varying Hilbert spaces.
More precisely, we prove that the canonical sequence of discrete graph energies (associated with the fractal energy form) converges to the energy form (induced by a resistance form) on a finitely ramified fractal in the sense of quasi-unitary equivalence. Moreover, we allow a perturbation by magnetic potentials and we specify the corresponding errors.
This aforementioned approach is an approximation of the fractal from within (by an increasing sequence of finitely many points). The natural step that follows this realisation is the question whether one can also approximate fractals from outside, i.e., by a suitable sequence of shrinking supersets. We partly answer this question by restricting ourselves to a very specific structure of the approximating sets, namely so-called graph-like manifolds that respect the structure of the fractals resp. the underlying discrete graphs. Again, we show that the canonical (properly rescaled) energy forms on such a sequence of graph-like manifolds converge to the fractal energy form (in the sense of quasi-unitary equivalence).
From the quasi-unitary equivalence of energy forms, we conclude the convergence of the associated linear operators, convergence of the spectra and convergence of functions of the operators – thus essentially the same as in the case of the usual norm resolvent convergence.

In the modeling context, non-linearities and uncertainty go hand in hand. In fact, the utility function's curvature determines the degree of risk-aversion. This concept is exploited in the first article of this thesis, which incorporates uncertainty into a small-scale DSGE model. More specifically, this is done by a second-order approximation, while carrying out the derivation in great detail and carefully discussing the more formal aspects. Moreover, the consequences of this method are discussed when calibrating the equilibrium condition. The second article of the thesis considers the essential model part of the first paper and focuses on the (forward-looking) data needed to meet the model's requirements. A large number of uncertainty measures are utilized to explain a possible approximation bias. The last article keeps to the same topic but uses statistical distributions instead of actual data. In addition, theoretical (model) and calibrated (data) parameters are used to produce more general statements. In this way, several relationships are revealed with regard to a biased interpretation of this class of models. In this dissertation, the respective approaches are explained in full detail and also how they build on each other.
In summary, the question remains whether the exact interpretation of model equations should play a role in macroeconomics. If we answer this positively, this work shows to what extent the practical use can lead to biased results.